Seasonal Management

Jeff Harris

Extension/Research Apiculturist Department Biochemistry, Molecular Biology, Entomology & Plant Pathology Mississippi State University, MS 39762

Mississippi Agricultural & Forestry Experiment Station

The Queen Lays All of the Eggs

Mating Occurs in the Air

A queen mates with > 20 drones and store sperm in a special gland

Mating occurs high above ground (90-120 feet)

PLATE 20. Stages in development from egg to pupa (after J.A.Nelson, A.P.Sturtevant, & B.Lineburg, 1924).

The Workers

Arrangement of the Nest

Annual cycles of colony population and food resources

Nectar Forage

Pollen Forage

Bee Bread Pollen + Microflora

Incoming Food Stimulates Brood Rearing

SWARM Essentials

Ecology • Management • Sustainability

STEPHEN J. REPASKY WITH LAWRENCE JOHN CONNOR FOREWORD BY THOMAS D. SEELEY

Types of Swarming

- Reproductive swarms (primary)
- Afterswarms (secondary)
- Absconding swarms

The function of primary swarms is reproduction by colony fission

Pre-Swarm Conditions

Crowded with Good Nutrition

Crowded Colony

Timing of Swarming

- New York: May-June, peaks in June
- Pennsylvania: May-June, peaks in late May
- Arkansas: April-May, peaks in early May
- Louisiana: March-May, peaks in April

Many Queen Cups → weeks from swarming

Getting Ready to Swarm

Broodnest Time until Swarming

- Many queen cups go time, swarming in weeks
- Eggs in cups will swarm in 8-10 days
- Capped cells
 any moment

Swarm Cells located on bottom of combs (easily seen by tilting back brood boxes)

Emergency Queen Cells located anywhere, and they are usually shorter than swarm cells

While In Flight

- Worker and queen pheromones hold the mass of bees together
- Appears wildly chaotic, but calms quickly on landing
- Bees assemble on a structure (bush, tree or building) within a few hundred yards of original nest site

Finding the New Home

- 1. Scouts search out cavities
- 2. Scouts communicate cavity information using dances
- 3. Colony-wide debate
- 4. A choice is made (all dances are the same)
- 5. Chaotic exodus (again)
- 6. Land at new site

Back at the Old Nest Site...

- Virgin queens emerge from cells
- Multiple virgins tolerate each other only for a brief period
- Queens do fight to the death on occasion, but workers often "ball" unwanted queens
- Virgin queens participate in afterswarms

Queen cells being chewed down after a virgin queen has emerged

It Already Swarmed!

Broodnest

- Open brood is present
- Sealed but no open brood
- No brood but there are remains of queen cells
- Multiple eggs in cells

Likely time of Swarm

recent, 0-4 days

more than 4-5 days

swarmed > 3 weeks, new queen not laying yet

> 28 days ago, new queen failed, laying workers

Preventing Swarming

- **1. Reversing hive bodies**
- 2. Adding supers
- 3. Splits / nucs / increases
- 4. Shake nurse bees in front of weaker colony
- 5. Checker boarding

EARLY SPRING

Incorrect

INCREASE

Nuclei • Management • Wintering

LAWRENCE JOHN CONNOR FOREWORD BY KIM FLOTTUM SECOND EDITION

Keys to Solid Beekeeping

- Constantly evaluate honey productions from bee yards
- Push your mean honey production to be better all of the time
- Understand that colony loss is a reality accept that 25% loss may be normal
- Use increases (splits) to either keep number of colonies stable through time, or to increase the size of your operation

Definitions

- A <u>split</u> is separating the two hive bodies from a colony to make two colonies
- A <u>nuc</u> is a fully balanced but miniature colony
- An <u>increase</u> is simply adding to the number of colonies that you manage

Why Make Splits and Nucs?

- To grow your business
- To replace winter losses
- Foolproof requeening
- Management tool for swarm prevention
- Queen rearing / mating nuc

Things Needed to Make Splits

- Strong and productive colonies (A and B students) coming out of the winter are kept as your honey primary producing colonies (manage these for swarming)
- Poorer colonies your C students and lower are all candidates for splits
- Queens or queen cells
- Nucleus hive bodies (or other hive sizes)
- A location for new nucs that is far from source yard (> 3 miles)
Basic Rules to Making Nucs

- Make them in middle of the day when field bees are out of the hive
- Keep the nuc in progress protected from the sun to avoid baking uncapped brood
- Use a minimum amount of smoke
- Nucs should have reduced entrances and/or robber screens

Up to 4 Nucs from One Colony

- 1 frame of brood for mating nuc
- 2 frames of brood for an increase colony
- 3 frames to make a split that should produce honey

Texas Set-Off Splits

colonies of varying strength in the spring time

arrangement after workup: each box has 3 frames brood, 3 frames of honey/pollen, and excluders used to pin queen

Texas Set-Off Splits

<u>Night after workup:</u>all boxes placed onto bottom boards

<u>Next day:</u> caged queens placed into queenless units

Honey Production

LATE SPRING

EARLY SUMMER

MID-SUMMER

LATE SUMMER

Nectar → Honey

- Nectar is a dilute solution of fructose, glucose and some sucrose
- Bees add the enzyme <u>invertase</u> to nectar, regurgitate the mixture into honeycomb, and evaporate the excess water
- The fully ripened and capped product is a complex mixture that we call honey

Bee escape boards

eus J Bee escape board

Bee repellents

Honey Harvest

Honey Production in 2011

State	No. Colonies	Yield per Colony (lbs.)	Avg. Price per pound	Total Value (\$ million)
Mississippi	16,000	98	\$1.44	2.2
South Dakota	265,000	58	\$1.51	23.2
North Dakota	510,000	91	\$1.50	69.6
Montana	157,000	74	\$1.58	18.4
all of U.S.	2.6 million	66	\$1.73	285.7

Annual cycles of colony population and food resources

EARLY FALL

Combine weak hives

Newspaper method

LATE FALL

Final Check

- Install mouse guards
- Ventilate moisture
- Heft for estimating proper weight
- In warm winters, re-check in early January

Reducers & Mouse Guards

WINTER

Colony Needs

- 50-60 pounds of stored honey or sugar to survive a winter
- 50-60 pounds of pollen per year to grow normally
- Be sure to leave the old fall pollen in the hive during winter – the bees will need this as soon as the queen begins laying eggs in January
- Always provide protein supplement in winter sugar food (it won't hurt and it probably helps)

Winter Stores

- \geq 70 lbs. stored food \rightarrow 18% colony loss
- < 60 lbs. stored food \rightarrow 55% colony loss
- Typically, 45-65 lbs. stored food should be sufficient in moderate winters

Feeding Sucrose

- Dry Sugar does not stimulate foraging activity
- Thin Syrup (≤ 50%) stimulates foraging, comb construction, and brood rearing if trickled to colony
- Thick Syrup (67%) usually does not stimulate; used in autumn feeding to offset short-falls

Feeding Sucrose

33% Syrup: trickle; stimulates brood rearing

4.2 lbs. sucrose + 1 gallon water (makes 1.2 gallons syrup)

50% Syrup: spring feeding

8.3 lbs. sucrose + 1 gallon water (makes 1.6 gallons syrup)

Thick Syrup (67%): autumn feeding

16.6 lbs. sucrose + 1 gallon water (makes 2.3 gallons syrup)

Making Fondant (soft candy)

- 10 lbs. table sugar (sucrose)
- 4 cups water
- 1 tbsp. white vinegar or lemon juice
- 5 drops essential oil (lemon grass)

Feeding Fondant

Candy Boards

- Better than syrup during cold weather (syrup will chill your bees)
- Easy to keep above cluster and check; can be changed in 15-30 seconds
- Easy to add protein supplement at the same time
- Allows an upper entrance to help get rid of moisture and allow the cluster ease of access to the outside

Making Hard Winter Candy

- 10-15 lbs. table sugar (sucrose)
- 3 cups water
- 1 tbsp. white vinegar
- 1 pollen patty (any brand)

Wire Candy Board

Add Protein Supplements

Feeding Protein to Bees

- Pollen Substitute: 1 part dry mix to 2 parts heavy syrup; dry mix is 1:3 pollen/soybean flour
- Soy-sugar Patties: 1 part dry mix to 2 parts heavy syrup; dry mix is 4 parts soybean flour + 1 part Brewer's yeast

When to Feed Pollen Supplement/Substitutes?

- When flight is restricted (e.g. cool weather in spring)
- Boosting weak or nucleus colonies
- During pollen deficient honey flows
- When pollen source is poor quality, or monofloral
Commercial Protein Supplements

- Global Patties
- MegaBee
- BeePro
- Bee-Pol
- Feed-Bee

Protein Supplements

- Place patties close to broodnest
- Feed a light syrup at the same time; helps stimulate brood rearing
- Be careful in cooler periods!

Newbie Mistakes

LATE WINTER

Final Thoughts

- Leave candy board in all winter
- Check it 3-4 times during winter and replenish when necessary
- Provide protein supplement by January to help brood rearing
- Do not begin syrup feeding until mid- or late March

Primary Goal

- Colony strength is important
- Winter Bees are most important
- Good Queens essential
 - Control Varroa
- Consider a brood break
 with requeening

Spring Colony Size

8 to 10 frames bees

4 to 5 frames brood

At least 15 lbs. honey

At least 1 to 2 frames pollen